Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 140, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561828

RESUMO

BACKGROUND: Limb Girdle Muscular Dystrophy R1 (LGMDR1) is an autosomal recessive neuromuscular disease caused by mutations in the calpain-3 (CAPN3) gene. As clinical and pathological features may overlap with other types of LGMD, therefore definite molecular diagnosis is required to understand the progression of this debilitating disease. This study aims to identify novel variants of CAPN3 gene in LGMDR1 patients. RESULTS: Thirty-four patients with clinical and histopathological features suggestive of LGMD were studied. The muscle biopsy samples were evaluated using Enzyme histochemistry, Immunohistochemistry, followed by Western Blotting and Sanger sequencing. Out of 34 LGMD cases, 13 patients were diagnosed as LGMDR1 by immunoblot analysis, demonstrating reduced or absent calpain-3 protein as compared to controls. Variants of CAPN3 gene were also found and pathogenicity was predicted using in-silico prediction tools. The CAPN3 gene variants found in this study, included, two missense variants [CAPN3: c.1189T > C, CAPN3: c.2338G > C], one insertion-deletion [c.1688delinsTC], one splice site variant [c.2051-1G > T], and one nonsense variant [c.1939G > T; p.Glu647Ter]. CONCLUSIONS: We confirmed 6 patients as LGMDR1 (with CAPN3 variants) from our cohort and calpain-3 protein expression was significantly reduced by immunoblot analysis as compared to control. Besides the previously known variants, our study found two novel variants in CAPN3 gene by Sanger sequencing-based approach indicating that genetic variants in LGMDR1 patients may help to understand the etiology of the disease and future prognostication.


Assuntos
Calpaína , Distrofia Muscular do Cíngulo dos Membros , Humanos , Calpaína/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação/genética , Mutação de Sentido Incorreto , Proteômica
2.
Acta Myol ; 43(1): 16-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586165

RESUMO

The Quality of Life (QOL) is influenced by several disease-related factors, support, resources, expectations, and aspirations, within the disease-related concepts. The Individualized Neuromuscular Quality of Life (INQoL) is a validated muscle disease-specific measure of the QoL developed from the experiences of patients with muscle disease and can be used for people or large cohorts. This review of QoL in transportinopathy cases reports adjustments in an autosomal dominant (AD) LGMD, and a comparison is made with autosomal recessive (AR) LGMD evaluated by INQoL. The locus for this form of LGMD with AD inheritance was found on chromosome 7, and then identification of the gene and its encoded protein (transportin-3) was obtained in 2013. A large three-generation family with several branches in Spain and Italy was previously reported and described in detail. Some patients had an early onset weakness, but others had an adult onset of the disease, as late as 58 years. The severity of the appearance of the phenotype is correlated with QoL and progresses with age. Assessing the impact on their QoL is particularly relevant to know whether the treatment is reducing their suffering.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Adulto , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Qualidade de Vida , Fenótipo , Padrões de Herança , Itália
3.
BMC Neurol ; 24(1): 96, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491364

RESUMO

BACKGROUND: The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN: The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION: To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION: Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Fenótipo , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP40/genética , Pentosiltransferases/genética , Anoctaminas/genética
4.
Cells ; 13(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391941

RESUMO

OBJECTIVE: To identify novel biomarkers as an alternative diagnostic tool for limb girdle muscular dystrophy (LGMD). BACKGROUND: LGMD encompasses a group of muscular dystrophies characterized by proximal muscles weakness, elevated CK levels and dystrophic findings on muscle biopsy. Heterozygous CAPN3 mutations are associated with autosomal dominant LGMD-4, while biallelic mutations can cause autosomal recessive LGMD-1. Diagnosis is currently often based on invasive methods requiring muscle biopsy or blood tests. In most cases Western blotting (WB) analysis from muscle biopsy is essential for a diagnosis, as muscle samples are currently the only known tissues to express the full-length CAPN3 isoform. METHODS: We analyzed CAPN3 in a cohort including 60 LGMD patients. Selected patients underwent a complete neurological examination, electromyography, muscle biopsy, and skin biopsies for primary fibroblasts isolation. The amount of CAPN3 was evaluated by WB analysis in muscle and skin tissues. The total RNA isolated from muscle, fibroblast and urine was processed, and cDNA was used for qualitative analysis. The expression of CAPN3 was investigated by qRT-PCR. The CAPN3 3D structure has been visualized and analyzed using PyMOL. RESULTS: Among our patients, seven different CAPN3 mutations were detected, of which two were novel. After sequencing CAPN3 transcripts from fibroblast and urine, we detected different CAPN3 isoforms surprisingly including the full-length transcript. We found comparable protein levels from fibroblasts and muscle tissue; in particular, patients harboring a novel CAPN3 mutation showed a 30% reduction in protein compared to controls from both tissues. CONCLUSIONS: Our findings showed for the first time the presence of the CAPN3 full-length transcript in urine and skin samples. Moreover, we demonstrated surprisingly comparable CAPN3 protein levels between muscle and skin samples, thus allowing us to hypothesize the use of skin biopsy and probably of urine samples as an alternative less invasive method to assess the amount of CAPN3 when molecular diagnosis turns out to be inconclusive.


Assuntos
Músculos , Distrofia Muscular do Cíngulo dos Membros , Humanos , Mutação/genética , Músculos/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Heterozigoto , Biomarcadores
5.
Retin Cases Brief Rep ; 18(1): 39-42, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007191

RESUMO

PURPOSE: To report bilateral retinal vascular occlusive disease in limb-girdle muscular dystrophy (LGMD). METHODS: Case report. RESULTS: A 34-year-old Asian woman was referred for evaluation and management of central retinal vein occlusion. Ultra-wide-field fluorescein angiography showed resolving initial peripheral retinal vein occlusion in one eye and peripheral venular segmental staining in the fellow asymmetric eye. Genetic testing established the diagnosis of LGMD. CONCLUSION: Similar to other forms of muscular dystrophy, LGMD is caused by genetic abnormalities in sarcolemma proteins, a key structural component that connects the intracellular cytoskeleton of a myofiber to the extracellular matrix. Like other muscular dystrophies, LGMD may be associated with retinal vascular abnormalities noted. In this case, retinal vascular smooth muscle dysfunction was seen in LGMD, analogous to reported vascular abnormalities in other muscular dystrophies such as facioscapulohumeral dystrophy and Duchenne muscular dystrophy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Doenças Retinianas , Oclusão da Veia Retiniana , Feminino , Humanos , Adulto , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Doenças Retinianas/genética , Testes Genéticos
6.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139231

RESUMO

Limb girdle muscular dystrophies (LGMDs) are a group of genetically inherited neuromuscular diseases with a very variable clinical presentation and overlapping traits. Over the last few years there has been an increasing interest in the use of non-invasive circulating biomarkers to monitor disease progression and to evaluate the efficacy of therapeutic approaches. Our aim was to identify the miRNA signature with potential value for LGMD patient screening and stratification. Using miRCURY LNA miRNA qPCR Serum/Plasma Panel, we analyzed 179 miRNAs from 16 patients, divided in four pools based on their genetic diagnosis, and from healthy controls. The miRNAs analysis showed a total of 107 dysregulated miRNAs in LGMD patients when compared to the healthy controls. After filtering via skeletal tissue expression and gene/pathways target analysis, the number of dysregulated miRNAs drastically reduced. Six selected miRNAs-let-7f-5p (in LGMDR1), miR-20a-5p (in LGMDR2), miR-130b-5p, miR-378a-5p (both in LGMDR3), miR-376c-3p and miR-382-5p (both in LGMDR4)-whose expression was significantly lower compared to controls in the different LGMD pools, were further investigated. The bioinformatic analysis of the target genes in each selected miRNA revealed ECM-receptor interaction and TGF-beta signaling as the most involved pathways. The correlation analysis showed a good correlation of let-7f-5p with fibrosis and with the cross sectional area of type I and type II fibers, while miR-130b-5p showed a good correlation with the age of onset of the disease. The receiver operating characteristic curves showed how single miRNAs were able to discriminate a specific group of LGMD patients and how the combination of six miRNAs was able to discriminate LGMD patients from controls.


Assuntos
MicroRNAs , Distrofia Muscular do Cíngulo dos Membros , Humanos , MicroRNAs/genética , Perfilação da Expressão Gênica , Biomarcadores , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Curva ROC
7.
Orphanet J Rare Dis ; 18(1): 356, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974208

RESUMO

BACKGROUND: Limb-girdle muscular dystrophies (LGMDs) are a group of heterogeneous inherited diseases predominantly characterized by limb-girdle muscle weakness and dystrophic changes on histological analysis. The frequency of LGMD subtypes varies among regions in China and ethnic populations worldwide. Here, we analyzed the prevalence of LGMD subtypes, their corresponding clinical manifestations, and molecular data in a cohort of LGMD patients in Southeast China. METHODS: A total of 81 consecutive patients with clinically suspected LGMDs from 62 unrelated families across Southeast China were recruited for targeted next-generation sequencing and whole-exome sequencing from July 2017 to February 2020. RESULTS: Among 50 patients (41 families) with LGMDs, the most common subtypes were LGMD-R2/LGMD2B (36.6%) and LGMD-R1/LGMD2A (29.3%). Dystroglycanopathies (including LGMD-R9/LGMD2I, LGMD-R11/LGMD2K, LGMD-R14/LGMD2N and LGMD-R20/LGMD2U) were the most common childhood-onset subtypes and were found in 12.2% of the families. A total of 14.6% of the families had the LGMD-R7/LGMD2G subtype, and the mutation c.26_33dupAGGTGTCG in TCAP was the most frequent (83.3%). The only patient with the rare subtype LGMD-R18/LGMD2S had TRAPPC11 mutations; had a later onset than those previously reported, and presented with proximal‒distal muscle weakness, walking aid dependency, fatty liver disease and diabetes at 33 years of age. A total of 22.0% of the patients had cardiac abnormalities, and one patient with LMNA-related muscular dystrophy/LGMD1B experienced sudden cardiac death at 37 years of age. A total of 15.4% of the patients had restrictive respiratory insufficiency. Muscle imaging in patients with LGMD-R1/LGMD2A and LGMD-R2/LGMD2B showed subtle differences, including more severe fatty infiltration of the posterior thigh muscles in those with LGMD-R1/LGMD2A and edema in the lower leg muscles in those with LGMD-R2/LGMD2B. CONCLUSION: We determined the prevalence of different LGMD subtypes in Southeast China, described the detailed clinical manifestations and distinct muscle MRI patterns of these LGMD subtypes and reported the frequent mutations and the cardiorespiratory involvement frequency in our cohort, all of which might facilitate the differential diagnosis of LGMDs, allowing more timely treatment and guiding future clinical trials.


Assuntos
População do Leste Asiático , Distrofia Muscular do Cíngulo dos Membros , Humanos , Criança , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Músculo Esquelético/patologia , Debilidade Muscular/patologia
9.
Ann Clin Transl Neurol ; 10(11): 2092-2104, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688281

RESUMO

OBJECTIVE: Clinical and genetic heterogeneities make diagnosis of limb-girdle muscular dystrophy (LGMD) and other overlapping disorders of muscle weakness complicated and expensive. We aimed to develop a comprehensive next generation sequence-based multi-gene panel ("The Lantern Focused Neuromuscular Panel") to detect both sequence variants and copy number variants in one assay. METHODS: Patients with clinical diagnosis of LGMD or other overlapping muscular dystrophies in the United States were tested by PerkinElmer Genomics in 2018-2021 via "The Lantern Project," a sponsored diagnostic testing program. Sixty-six genes related to LGMD subtypes- and other myopathies were investigated. Main outcomes were diagnostic yield, gene-variant spectrum, and LGMD subtypes' prevalence. RESULTS: Molecular diagnosis was established in 19.6% (1266) of 6473 cases. Major genes contributing to LGMD were identified including CAPN3 (5.4%, 68), DYSF (4.0%, 51), GAA (3.7%, 47), ANO5 (3.6%, 45), and FKRP (2.7%, 34). Genes of other overlapping MD subtypes identified included PABPN1 (10.5%, 133), VCP (2.2%, 28), MYOT (1.2% 15), LDB3 (1.0%, 13), COL6A1 (1.5%, 19), FLNC (1.1%, 14), and DNAJB6 (0.8%, 10). Different sizes of copy number variants including single exon, multi-exon, and whole genes were identified in 7.5% (95) cases in genes including DMD, EMD, CAPN3, ANO5, SGCG, COL6A2, DOK7, and LAMA2. INTERPRETATION: "The Lantern Focused Neuromuscular Panel" enables identification of LGMD subtypes and other myopathies with overlapping clinical features. Prevalence of some MD subtypes was higher than previously reported. Widespread deployment of this comprehensive NGS panel has the potential to ensure early, accurate diagnosis as well as re-define MD epidemiology.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Estados Unidos , Variações do Número de Cópias de DNA/genética , Doenças Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Éxons , Proteínas do Tecido Nervoso/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP40/genética , Pentosiltransferases/genética , Anoctaminas/genética , Proteína I de Ligação a Poli(A)/genética
10.
Muscle Nerve ; 68(5): 758-762, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37638785

RESUMO

INTRODUCTION/AIMS: In our experience, patients with late-onset facioscapulohumeral muscular dystrophy type 1 (FSHD1) are frequently misdiagnosed, some for many years. The aim of this report is to document this clinical experience including the presenting symptoms and misdiagnoses and to discuss the challenges in diagnosing patients with late-onset FSHD1. METHODS: We performed a retrospective medical record review and recorded clinical data on patients with a genetically confirmed diagnosis of FSHD1, who began to have symptoms at 50 years of age or older, and either had no family history of FSHD1 or had a history of an undiagnosed weakness in a family member. RESULTS: Thirteen patients, 7 men and 6 women, met the study inclusion criteria. Age of onset ranged from 52 to 74 (mean, 59.8) years, age of diagnosis ranged from 54 to 80 (mean, 66.5) years, and duration of symptoms from onset to diagnosis was 1 to 15 (mean, 6.7) years. Prior diagnoses included lumbosacral polyradiculopathy in five (38%); statin-related myopathy in two (15%); and one each of polymyositis, inclusion-body myositis, distal myopathy, limb-girdle muscular dystrophy, unspecific myopathy, and unspecified scapular winging. For eight patients (62%), family history was suspected in deceased members or if by confirmed DNA test postdiagnosis. DISCUSSION: The diagnosis of late-onset FSHD1 is often delayed by many years with patients frequently receiving misdiagnoses. FSHD1 may not be considered in the differential diagnosis of late-onset weakness due to its rarity and because its clinical features are subtler, nonspecific, and mimic other neuromuscular disorders.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular Facioescapuloumeral , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Estudos Retrospectivos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Erros de Diagnóstico
11.
Brain ; 146(12): 5098-5109, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516995

RESUMO

Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% 'solved' and ∼13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Doenças Neuromusculares , Doenças do Sistema Nervoso Periférico , Humanos , Doenças Neuromusculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , DNA
12.
Yi Chuan ; 45(6): 536-542, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340967

RESUMO

Limb-girdle muscular dystrophy (LGMD), a rare group of non-congenital inherited muscle diseases, is characterized by a progressive reduction in muscle tone and force of the proximal limbs. The clinical manifestations and genetic patterns of LGMD are heterogeneous. This study reported on a 10-year-old male patient with LGMD type 2U who experienced muscle weakness in the lower limbs after exercise. Upon admission, the patient's creatine kinase levels were significantly elevated, and hydration and alkalinization therapy were ineffective. Using high-throughput sequencing, muscular dystrophy-related genes were tested in the patient, his parents, and his sister. The patient was found to have a heterozygous deletion of exon 9 of the ISPD gene and a heterozygous missense mutation c.1231C>T (p.Leu411Phe). The patient's father carried the heterozygous missense mutation c.1231C>T (p.Leu411Phe) of the ISPD gene, while his mother and sister carried a heterozygous deletion of exon 9 of the ISPD gene. These mutations have not been reported in existing databases or literature. Conservation and protein structure prediction analyses of the mutation sites indicated that they are highly conserved and located in the C-terminal domain of the ISPD protein, which may affect protein function. Based on the above results and relevant clinical data, the patient was definitively diagnosed with LGMD type 2U. This study enriched the spectrum of ISPD gene mutations by summarizing the patient's clinical characteristics and analyzing new ISPD gene variations. This can aid in the early diagnosis and genetic counseling of the disease.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Masculino , Humanos , Criança , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação , Testes Genéticos , Mutação de Sentido Incorreto , Éxons
13.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167966

RESUMO

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Doenças Musculares/genética , Oxirredutases , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/efeitos adversos
14.
Skelet Muscle ; 13(1): 10, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217920

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy R8 (LGMD R8) is a rare autosomal recessive muscle disease caused by TRIM32 gene biallelic defects. The genotype-phenotype correlation of this disease has been reported poorly. Here, we report a Chinese family with two female LGMD R8 patients. METHODS: We performed whole-genome sequencing (WGS) and Sanger sequencing on the proband. Meanwhile, the function of mutant TRIM32 protein was analyzed by bioinformatics and experimental analysis. In addition, a summary of the reported TRIM32 deletions and point mutations and an investigation of genotype-phenotype correlation were performed through a combined analysis of the two patients and other cases reported in previous literature. RESULTS: The two patients displayed typical symptoms of LGMD R8, which worsened during pregnancy. Genetic analysis by whole-genome sequencing (WGS) and Sanger sequencing showed that the patients were compound heterozygotes of a novel deletion (chr9.hg19:g.119431290_119474250del) and a novel missense mutation (TRIM32:c.1700A > G, p.H567R). The deletion encompassed 43 kb and resulted in the removal of the entire TRIM32 gene. The missense mutation altered the structure and further affected function by interfering with the self-association of the TRIM32 protein. Females with LGMD R8 showed less severe symptoms than males, and patients carrying two mutations in NHL repeats of the TRIM32 protein had earlier disease onset and more severe symptoms than other patients. CONCLUSIONS: This research extended the spectrum of TRIM32 mutations and firstly provided useful data on the genotype-phenotype correlation, which is valuable for the accurate diagnosis and genetic counseling of LGMD R8.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Masculino , Feminino , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Estudos de Associação Genética , Mutação de Sentido Incorreto , Proteínas com Motivo Tripartido/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
15.
Ann Clin Transl Neurol ; 10(5): 686-695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026610

RESUMO

Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Deficiências na Proteostase , Humanos , Proteína com Valosina/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Fenótipo
16.
Adv Ther ; 40(5): 2296-2310, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917428

RESUMO

INTRODUCTION: Limb girdle muscular dystrophies (LGMDs) are a group of rare and heterogeneous disorders involving progressive wasting of shoulder and pelvic girdle musculature. This study aimed to generate qualitative evidence on patient and caregiver experiences with symptoms and impacts of LGMD on overall function and daily life for sarcoglycanopathy subtypes 2C/R5, 2D/R3, and 2E/R4. METHODS: Twenty-three individuals with LGMD with (n = 5) or without (n = 18) a caregiver participated in 60-minute semi-structured video interviews. Interview transcripts were analyzed using thematic analysis. Differences in patient experience by ambulation status and LGMD subtype were examined. RESULTS: Participants were ambulatory (n = 14) and non-ambulatory (n = 9), representing three subtypes: 2C/R5 (n = 4), 2D/R3 (n = 12), and 2E/R4 (n = 7), with mean age of 34.8 years (SD = 16.08). 56.5% identified as female. Conceptual saturation was achieved within 18/23 interviews. Ambulatory participants identified difficulty with complex physical activities, e.g., running (n = 11, 78.6%), physical strength (n = 14, 100%), and difficulty with transfers, e.g., difficulty getting off the floor (n = 10, 71.4%). All non-ambulatory participants discussed problems with activities of daily living (ADLs) and transfers, e.g., getting in/out of bed and upper extremity function, particularly reaching (n = 8, 88.9%) and fine motor skills (n = 6, 66.7%). Fatigue and pain were reported by the majority of participants (n = 16, 69.6% and n = 19, 82.6%, respectively). A conceptual disease model was developed illustrating symptoms and impacts and their relationships to disease stage, capturing the patient experience across LGMD disease trajectory. CONCLUSIONS: This study contributes to the limited evidence describing the patient experience of living with LGMD. The conceptual model can inform patient-centered assessment in future LGMD clinical trials.


Assuntos
Atividades Cotidianas , Distrofia Muscular do Cíngulo dos Membros , Humanos , Feminino , Adulto , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Extremidade Superior , Avaliação de Resultados da Assistência ao Paciente
17.
Brain ; 146(9): 3800-3815, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913258

RESUMO

Anoctamin-5 related muscle disease is caused by biallelic pathogenic variants in the anoctamin-5 gene (ANO5) and shows variable clinical phenotypes: limb-girdle muscular dystrophy type 12 (LGMD-R12), distal muscular dystrophy type 3 (MMD3), pseudometabolic myopathy or asymptomatic hyperCKaemia. In this retrospective, observational, multicentre study we gathered a large European cohort of patients with ANO5-related muscle disease to study the clinical and genetic spectrum and genotype-phenotype correlations. We included 234 patients from 212 different families, contributed by 15 centres from 11 European countries. The largest subgroup was LGMD-R12 (52.6%), followed by pseudometabolic myopathy (20.5%), asymptomatic hyperCKaemia (13.7%) and MMD3 (13.2%). In all subgroups, there was a male predominance, except for pseudometabolic myopathy. Median age at symptom onset of all patients was 33 years (range 23-45 years). The most frequent symptoms at onset were myalgia (35.3%) and exercise intolerance (34.1%), while at last clinical evaluation most frequent symptoms and signs were proximal lower limb weakness (56.9%) and atrophy (38.1%), myalgia (45.1%) and atrophy of the medial gastrocnemius muscle (38.4%). Most patients remained ambulatory (79.4%). At last evaluation, 45.9% of patients with LGMD-R12 additionally had distal weakness in the lower limbs and 48.4% of patients with MMD3 also showed proximal lower limb weakness. Age at symptom onset did not differ significantly between males and females. However, males had a higher risk of using walking aids earlier (P = 0.035). No significant association was identified between sportive versus non-sportive lifestyle before symptom onset and age at symptom onset nor any of the motor outcomes. Cardiac and respiratory involvement that would require treatment occurred very rarely. Ninety-nine different pathogenic variants were identified in ANO5 of which 25 were novel. The most frequent variants were c.191dupA (p.Asn64Lysfs*15) (57.7%) and c.2272C>T (p.Arg758Cys) (11.1%). Patients with two loss-of function variants used walking aids at a significantly earlier age (P = 0.037). Patients homozygous for the c.2272C>T variant showed a later use of walking aids compared to patients with other variants (P = 0.043). We conclude that there was no correlation of the clinical phenotype with the specific genetic variants, and that LGMD-R12 and MMD3 predominantly affect males who have a significantly worse motor outcome. Our study provides useful information for clinical follow up of the patients and for the design of clinical trials with novel therapeutic agents.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Feminino , Masculino , Humanos , Mialgia/genética , Estudos Retrospectivos , Anoctaminas/genética , Mutação/genética , Doenças Musculares/epidemiologia , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Atrofia/patologia
19.
Ann Clin Transl Neurol ; 10(2): 292-296, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542547

RESUMO

The precise detection and interpretation of pathogenic DYSF variants are sometimes challenging, largely due to rare deep-intronic splice-altering variants. Here, we report on the genetic diagnosis of a male patient with dysferlinopathy. He remained genetically unsolved after routine exonic detection approaches that only detected a novel heterozygous frameshift variant (c.407dup, p.Thr137Tyrfs*11) in DYSF exon 5. Via muscle-derived DYSF mRNA studies, we identified a novel deep-intronic DYSF variant in the other allele (c.1397 + 649C > T), which causing in-frame alterations in DYSF mRNA and protein structure and confirmed his genetic diagnosis of dysferlinopathy. Our study emphasizes the potential role of undetected deep-intronic splice-altering variants in monogenic diseases.


Assuntos
Disferlina , Distrofia Muscular do Cíngulo dos Membros , Humanos , Masculino , Disferlina/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , RNA Mensageiro , Éxons/genética
20.
Ann Hum Genet ; 87(3): 104-114, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575883

RESUMO

Muscular dystrophies are a heterogeneous group of neuromuscular disorders with a wide range of the clinical and genetic spectrum. Whole-exome sequencing (WES) has been on the rise to become the usual method of choice for molecular diagnosis in patients presenting with muscular dystrophy or congenital or metabolic myopathy phenotype. Here, we used a panel with 47 genes including not only muscular dystrophy but also myopathy-associated genes that had been used as a first-tier approach. A total of 146 patients who were referred to our clinic with the prediagnosis of muscular dystrophy and/or myopathy were included in the study. Dystrophin gene deletion/duplication was ruled out on the patients with a preliminary diagnosis of Duchenne muscular dystrophy. In this study, the molecular etiology of 67 patients was proved with the gene panel with a diagnostic yield of 46%. Causal variants were identified in 23 genes including CAPN3(11), DYSF(9), DMD(8), SGCA(5), TTN(4), LAMA2(3), LMNA(3), SGCB(3), COL6A1(3), DES (2), CAV3(2), FKRP(2), FKTN(2), ANO5, COL6A2, CLCN1, GNE, POMGNT1, POMGNT2, POMT2, SYNE1, TCAP, and FLNC with 16 novel variants. There were 27 patients with uncertain molecular results including the ones who had a variant of uncertain significance, who had only one heterozygous variant for an autosomal recessive disease, and the ones who had two variants in different genes. Molecular diagnosis in muscular dystrophy is essential to plan clinical management and choosing treatment options. Also, the results will affect the reproduction options. Targeted next-generation sequencing is a cost-effective method that reduces the WES requirements with a significant diagnostic rate.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Pentosiltransferases/genética , Anoctaminas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...